skip to main content


Search for: All records

Creators/Authors contains: "Baranec, Christoph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    Adaptive Optics (AO) used in ground based observatories can be strengthened in both design and algorithms by a more detailed understanding of the atmosphere they seek to correct. Nowhere is this more true than on Maunakea, where a clearer profile of the atmosphere informs AO system development from the small separations of Extreme AO (ExAO) to the wide field Ground Layer AO (GLAO). Employing telemetry obtained from the ımaka GLAO demonstrator on the University of Hawaii 2.2-meter telescope, we apply a wind profiling method that identifies turbulent layer velocities through spatial-temporal cross correlations of multiple wavefront sensors (WFSs). We compare the derived layer velocities with nearby wind anemometer data and meteorological model predictions of the upper wind speeds and discuss similarities and differences. The strengths and limitations of this profiling method are evaluated through successful recovery of injected, simulated layers into real telemetry. We detail the profilers’ results, including the percentage of data with viable estimates, on four characteristic ımaka observing runs on open loop telemetry throughout both winter and summer targets. We report on how similar layers are to external measures, the confidence of these results, and the potential for future use of this technique on other multi conjugate AO systems. 
    more » « less
  2. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    We report on progress at the University of Hawaii on the integration and testing setups for the adaptive secondary mirror (ASM) for the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. We report on the development of the handling fixtures and alignment tools we will use along with progress on the optical metrology tools we will use for the lab and on-sky testing of the system. 
    more » « less
  3. Abstract

    In order to assess the multiplicity statistics of stars across spectral types and populations in a volume-limited sample, we censused nearby stars for companions with Robo-AO. We report on observations of 1157 stars of all spectral types within 25 pc with decl. >−13° searching for tight companions. We detected 154 companion candidates with separations ranging from ∼0.″15 to 4.″0 and magnitude differences up to Δmi7using the robotic adaptive optics instrument Robo-AO. We confirmed physical association from Gaia EDR3 astrometry for 53 of the companion candidates, 99 remain to be confirmed, and two were ruled out as background objects. We complemented the high-resolution imaging companion search with a search for comoving objects with separations out to 10,000 au in Gaia EDR3, which resulted in an additional 147 companions registered. Of the 301 total companions reported in this study, 49 of them are new discoveries. Out of the 191 stars with significant acceleration measurements in the Hipparcos–Gaia catalog of accelerations, we detect companions around 115 of them, with the significance of the acceleration increasing as the companion separation decreases. From this survey, we report the following multiplicity fractions (compared to literature values): 40.9% ± 3.0% (44%) for FGK stars and 28.2% ± 2.3% (27%) for M stars, as well as higher-order fractions of 5.5% ± 1.1% (11%) and 3.9% ± 0.9% (5%) for FGK stars and M-type stars, respectively.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. We are building a next-generation laser adaptive optics system, Robo-AO-2, for the UH 2.2-m telescope that will deliver robotic, diffraction-limited observations at visible and near-infrared wavelengths in unprecedented numbers. The superior Maunakea observing site, expanded spectral range and rapid response to high-priority events represent a significant advance over the prototype. Robo-AO-2 will include a new reconfigurable natural guide star sensor for exquisite wavefront correction on bright targets and the demonstration of potentially transformative hybrid AO techniques that promise to extend the faintness limit on current and future exoplanet adaptive optics systems. 
    more » « less